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Abstract 
 
The contribution deals with thermophysical parameter estimation in dynamic methods. 
The influence of temperature measurement uncertainty on the parameter estimation 
uncertainty is studied using least squares procedure. Difference analysis is used for time 
window determination in which the fitting procedure should be applied. The sensitivity 
coefficient analysis is performed on Pulse transient, Step-wise transient and EDPS 
method. 
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1 Introduction 
 
The methods used for measuring thermophysical parameters of materials can be divided 
into steady state and dynamic ones. While the former use a steady state temperature field 
inside the sample, the latter use a dynamic temperature field. The dynamic methods [1] 
can be characterized as follows. The temperature of the sample is stabilized and uniform. 
Then the dynamic heat flow in the form of a pulse or step-wise function is applied to the 
sample. The thermophysical parameters of the material can be calculated from the 
temperature response 

The measuring procedure consists of theory and experiment. The theoretical model of 
the experiment is described by the partial differential equation for the heat transport. The 
temperature function is a solution of this equation with boundary and initial conditions 
corresponding to the experimental arrangement. The experiment consists in measuring 
the temperature response and fitting the temperature function over the experimental 
points. Using the least squares procedure following thermophysical parameters can be 
estimated: thermal diffusivity a, thermal conductivity λ and specific heat capacity c. 
 
2 Least squares procedure 
 
As mentioned above the first step of evaluation is to determine the temperature function - 
temperature increase as a function of time. Assume the function is of known analytic 
form  

( ) ( )ptftf ααα ,...,,, 21=α         (1)  
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where t is a variable and α is a vector of unknown parameters [2]. In addition to one or 
two thermophysical parameters, there are usually some nuisance parameters connected 
with the model [3]. We suppose that the deviation between model and experiment is 
negligible and the only source of uncertainty, in this analysis, stems from temperature 
measuring accuracy. We also assume that the uncertainties of temperature measurement 
of all points are the same and uncertainties of time measurement are negligible. As the 
temperature function (1) is nonlinear in parameters we have to expand it using Taylor 
series [4]. Then we can use the linear least squares procedure in matrix notation 

( ) ( ) εα +−⋅=− aXatT ,f         (2) 

where T is a vector of temperature measured at n points determined by t vector of times. 
ε is a vector of errors, a is a close guess for parameter vector α and X is a sensitivity 
matrix [2] given by 
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is a sensitivity coefficient for parameter αj. The sensitivity coefficient is a measure of the 
change in temperature function due to the variation of the estimated parameter. Then the 
least squares estimate aLS of the parameter vector α is given by the form 

( ) ( )( at,TXXXaa f−⋅⋅⋅=−
− T1T

LS )  .       (5) 

The standard uncertainty of the parameter αj estimate becomes 

( ) ( )TuAu jj =α          (6) 

where 
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and  is a standard uncertainty of temperature measurement. If T is regarded as input 
quantity and αj as output one then Aj can be also considered as sensitivity coefficient 
defined by GUM [5]. So the parameter estimation uncertainty consists of two parts. The 
first is given by temperature function and selection of measured points. The second is 
given by temperature measurement uncertainty. 

( )Tu

 
3 Difference analysis  
 
In this section we will focus on optimizing the experiment with respect to the data 
window defined by the time interval ( )SBB ttt +, , where tB is the beginning and tS the size 
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of the interval, as shown in Figure 1. The difference analysis [6] is a method for the time 
window determination in which the fitting procedure should be applied to obtain reliable 
values of thermophysical parameters. The method is based on estimating parameters 
using least squares procedure when tB is successively changed while tS is kept constant. 
The results of fitting are plotted against tB. If the time interval ( )SBB ttt +,  is not suitable 
for parameter estimation, the results of fitting are erroneous and the plot is scattered. 

The difference analysis can be applied to data from real measurements where all types 
of uncertainties are included. It can also be used in experiment modelling where the only 
source of uncertainty is simulated as random noise of temperature measurement. The 
third application of difference analysis consist in plotting the time dependence of 
coefficient Aj. As seen from the equation (6),  low value of  Aj  predicts also low value of 
parameter uncertainty ( )ju α  and thus low scattering of parameter values αj computed 
using least squares estimation. Described procedure has been used for time interval 
determination in three dynamic methods of thermophysical parameters measurement. 
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Fig 1 Temperature function and data window definition 
 
4 Pulse transient method 
 
This method is characterized by pulse heating and one-dimensional heat flow into a 
infinite sample. The temperature is measured at a distance h from the plane heat source. 
The temperature function [1] is given by 
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where a is the thermal diffusivity, c is the specific heat capacity, Q is the heat energy of 
pulse and ρ is density. Figure 2 shows the temperature function and the sensitivity 
coefficients β  and a βc  as a function of time. Nondimensional time scale is defined by the 
Fourier number F at h= / 2 . Figure 3 shows the time dependence of coefficients Aa and 
Ac. The window in which the fitting procedure should be applied is 0.3 < F < 0.6 for 
specific heat and 0.05 < F < 0.3 for thermal diffusivity.  
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Fig 2 Temperature function and sensitivity coefficients βa  and βc  vs nondimensional 
time scale 
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Fig 3 Values of coefficients Aa and Ac vs nondimensional time scale  
 
5 Step-wise transient method 
 
This method is characterized by step-wise heating and one-dimensional heat flow into a 
infinite sample. The temperature is measured at a distance h from the plane heat source. 
The temperature function [7] is given by 
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where q is the heat current density and erfc is the error function integral [8]. Figure 4 
shows the temperature function and the sensitivity coefficients βa  and βc  as a function of 
time. Figure 5 shows the time dependence of coefficients Aa and Ac.The window in 
which the fitting procedure should be applied is 0.8 < F < 1.8 for specific heat and 0.1 < 
F < 1.5 for thermal diffusivity. 
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Fig 4 Temperature function and sensitivity coefficients βa  and βc  vs nondimensional 
time scale  
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Fig 5 Values of coefficients Aa and Ac vs nondimensional time scale  
 
6 Extended dynamic plane source ( EDPS ) method 
 
This method is characterized by step-wise heating and one-dimensional heat flow into a 
finite sample at the isothermal boundary conditions. The nickel disc simultaneously 
serves as the heat source and thermometer.  The temperature function [9] is given by 
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where q is the heat current density, h is the specimen thickness and ierfc is the error 
function integral [8]. Nuisance parameter τ is the base line referred to the additional 
increase in the temperature of the disc due to its imperfections. Figure 6 shows the 
temperature function and the sensitivity coefficients  βa  and βc  as a function of time. 
Figure 7 shows the time dependence of coefficients Aa and Ac. The window in which the 
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fitting procedure should be applied is 0.1 < F < 0.8 for specific heat and 0.1 < F < 1.1 for 
thermal diffusivity. 
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Fig 6 Temperature function and sensitivity coefficients βa  and βc  vs nondimensional 
time scale  
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Fig 7 Values of coefficients Aa and Ac vs nondimensional time scale  
 

7 Conclusions 
 
The work showed close connection between difference analysis and sensitivity 
coefficients analysis. Both methods solve the same question: How long the temperature 
response should be scanned and what time interval should be used for fitting. But there is 
a significant difference between these methods. While in difference analysis we need 
particular points with experimental or simulated noise, in sensitivity coefficients analysis 
we need only the temperature function. Presented analysis consists in plotting the time 
dependence of coefficient A defined by equation (7). The proper time interval has been 
assessed where coefficient A attained relatively low values. The analysis was performed 
on Pulse transient (Fig 3), Step-wise transient (Fig 5) and EDPS (Fig 7) method. The 
results are in good agreement with those of other methods [10, 11, 12].  
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